Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

Identifieur interne : 000203 ( Main/Exploration ); précédent : 000202; suivant : 000204

Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.

Auteurs : Le Thanh Mai Pham [Corée du Sud] ; Su Jin Kim ; Yong Hwan Kim [Corée du Sud]

Source :

RBID : pubmed:27872660

Abstract

BACKGROUND

Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer.

RESULTS

In the study of lignin peroxidase isozyme H8 from white-rot fungi

CONCLUSIONS

A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.


DOI: 10.1186/s13068-016-0664-1
PubMed: 27872660
PubMed Central: PMC5111271


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.</title>
<author>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Su Jin" sort="Kim, Su Jin" uniqKey="Kim S" first="Su Jin" last="Kim">Su Jin Kim</name>
<affiliation>
<nlm:affiliation>Life Ingredient Material Research Institute, CJ Company, 42 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea.</nlm:affiliation>
<wicri:noCountry code="subField">Gyeonggi-do Republic of Korea</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27872660</idno>
<idno type="pmid">27872660</idno>
<idno type="doi">10.1186/s13068-016-0664-1</idno>
<idno type="pmc">PMC5111271</idno>
<idno type="wicri:Area/Main/Corpus">000183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000183</idno>
<idno type="wicri:Area/Main/Curation">000183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000183</idno>
<idno type="wicri:Area/Main/Exploration">000183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.</title>
<author>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Su Jin" sort="Kim, Su Jin" uniqKey="Kim S" first="Su Jin" last="Kim">Su Jin Kim</name>
<affiliation>
<nlm:affiliation>Life Ingredient Material Research Institute, CJ Company, 42 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea.</nlm:affiliation>
<wicri:noCountry code="subField">Gyeonggi-do Republic of Korea</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan</wicri:regionArea>
<wicri:noRegion>Ulsan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In the study of lignin peroxidase isozyme H8 from white-rot fungi </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27872660</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.</ArticleTitle>
<Pagination>
<MedlinePgn>247</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In the study of lignin peroxidase isozyme H8 from white-rot fungi
<i>Phanerochaete chrysosporium</i>
(LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of k
<sub>cat</sub>
and k
<sub>cat</sub>
/K
<sub>M</sub>
values, respectively, in the oxidation of non-phenolic model lignin dimer.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pham</LastName>
<ForeName>Le Thanh Mai</ForeName>
<Initials>LT</Initials>
<AffiliationInfo>
<Affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Su Jin</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Life Ingredient Material Research Institute, CJ Company, 42 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yong Hwan</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Lignin peroxidase isozyme H8</Keyword>
<Keyword MajorTopicYN="N">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="N">Radical coupling</Keyword>
<Keyword MajorTopicYN="N">Suicide inhibition</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27872660</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0664-1</ArticleId>
<ArticleId IdType="pii">664</ArticleId>
<ArticleId IdType="pmc">PMC5111271</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1997 Jun 1;25(11):2227-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9153325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2008 Oct 14;10(38):5908-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 1999;28(7):533-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10541792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2014 Jul-Aug;61-62:48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2015 Apr;112(4):668-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2015 Feb 21;44(4):1015-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25619931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Sep 18;290(38):23201-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2011 Jul 12;7(7):2284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26606496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 1999 Feb;34(2):105-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10093212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 03;7(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24387130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 27;320(5884):1760-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2016 Feb 28;14(8):2385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26815633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Apr 1;315 ( Pt 1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Mar 12;41(10):3498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11876658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2015 Jul;28(7):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25858964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Dec 1;61(4):704-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1993;62:797-821</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8352601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Jul 18;380(4):742-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 23;10(10):e0140984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496708</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kim, Su Jin" sort="Kim, Su Jin" uniqKey="Kim S" first="Su Jin" last="Kim">Su Jin Kim</name>
</noCountry>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Pham, Le Thanh Mai" sort="Pham, Le Thanh Mai" uniqKey="Pham L" first="Le Thanh Mai" last="Pham">Le Thanh Mai Pham</name>
</noRegion>
<name sortKey="Kim, Yong Hwan" sort="Kim, Yong Hwan" uniqKey="Kim Y" first="Yong Hwan" last="Kim">Yong Hwan Kim</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27872660
   |texte=   Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27872660" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020